Casper Critical Design Review

Austin Briggs, Justin Fiaschetti, Adam Kotler, Peter Ha, Casey Goodwin

May 17th, 2020

Table of Contents

3. Meeting Record

- 4. Design Team
- 5. Casper Methodology
- 6. High-Level Requirements
- 7. Design Requirements
- 8. <u>Testing Timeline Overview</u>
- 9. Design Overview
- 10. <u>Subassemblies</u>
- 11. Part Numbers & Materials
- 12. Chamber Design
- 13. Chamber Metrics
- 14. Main Thrust Chamber
- 15. <u>Variable L* Rings</u>
- 16. <u>L* Configurations</u>
- 17. Attachment
- 18. Concentricity & Clocking
- 19. Instrumentation Ports
- 20. Sealing Geometry
- 21. Thermal Analysis
- 22. Purpose of Thermal Analysis
- 23. Thermal Model

- 24. Hot-Gas & Material Properties
- 25. Thermocouple Locations
- 26. Transient Analysis Results Inner Wall Temp
- 27. Transient Analysis Profile Through Wall
- 28. Thermocouple Locations (cont.)
- 29. Flux Calculation
- 30. Thermal Cycle Life
- 31. Injector Head Design
- 32. Injector Head Design Overview
- 33. HTS Mounting Block
- 34. Oxidizer Plenum
- 35. Fuel Plenum
- 36. Fuel Plenum (cont.)
- 37. Flow Paths
- 38. Copper Injector Faceplate
- 39. <u>Attachment</u>
- 40. Concentricity & Clocking
- 41. <u>Sealing</u>
- 42. Injector Element Design
- 43. Design Overview
- 44. Coaxial-Swirl Basics

- 45. Testing Path
- 46. Injector Element Parameters
- 47. Testing Path (cont.)
- 48. Logistics
- 49. Procurement & Manufacturing
- 50. Path Forward
- 51. Conclusion
- 52. Appendix

BUŔPG

Meeting Record

- Meeting attendance, notes, questions, discussions, and action items are tracked on Phriction
- Location: <u>https://phab.burpg.space/w/projects/ghost_series/casper/casper_cdr_notes/</u>

Document Name	Author	Date	Notes
Spectre CoDR	Casper Team	11/16/2019	<u>Design review notes</u>
Single Stage Trade Study Results	Austin Briggs, Justin Fiaschetti	1/20/2020	<u>Results write up</u>
Spectre Workbook	Casper Team	4/19/2020	
Injector Test Articles Workbook	Justin Fiaschetti, Austin Briggs	4/17/2020	
Casper Workbook	Casper Team	5/16/2020	
Casper Structural Calculations	Austin Briggs, Casey Goodwin	5/17/2020	
Casper CDR	Casper Team	5/17/2020	Design review notes

Austin Briggs

(ENG ME '21)

Project Lead;

Injector Design

Justin Fiaschetti (ENG ME '21) Injector Design

Adam Kotler

(ENG ME '21) Thermals; Chamber Design

Peter Ha (ENG ME '22) Chamber Design

Casey Goodwin (ENG ME '23) Chamber Design

Casper Methodology

- Casper was designed as a low-cost and low-risk test platform for BURPG's Spectre flight engine
- Spectre features a number of new technologies that require testing to fully understand and optimize
 - Coaxial-swirl injector design
 - Casper will be used to test combustion stability and efficiency of various injector element designs to be used on Spectre
 - Thermal modeling
 - Casper will aid in the findings of heat transfer coefficients present in the chamber for use in regenerative cooling analysis for Spectre
 - Chamber design
 - Casper has the capability of testing different chamber characteristic lengths for information pertinent to Spectre and future BURPG engine design
- Rapid design changes, configurability in the field, frequent testing, and low cost were the driving forces behind Casper

/ High-Level Requirements

- Casper must help determine the combustion performance and stability of the Spectre engine.
- Casper must be able to appropriately quantify the characteristic velocity (C*) and thrust coefficient (Cf) of the engine.
- Casper must feature on-site interchangeable injector elements.
- Casper must interface with Horizontal Test Stand with little to no modifications.
- Engine Body (Chamber & Injector Head) safety design requirements: NASA-STD-5005D
- Injector Elements safety design requirements: NASA-STD-5012B
- BURPG Requirements:
 - **REQ-RPG-0003**: Ambient design temperature is between 0°C to 38°C with a nominal ambient design temperature of 23°C.
 - **REQ-RPG-0004**: Minimum of two inter-propellant seals. All other sealing interfaces have a minimum of one seal.

BURPG

/ Design Requirements

BURPG

Requirement	Value	Units	Туре	Criticality	Source
Injector Element Mechanical Loads Yield/ULT. FoS	1.1/1.5		Minimum	Critical	NASA-STD-5012D
Engine Body Mechanical Loads Yield/Ult. FoS	2/3		Minimum	Critical	NASA-STD-5005D
Fuel (Isopropanol) Mass Flow Rate	0.385	kg/s	Target	High Priority	Casper Workbook
Ox (Nitrous Oxide) Mass Flow Rate	1.640	kg/s	Target	High Priority	Casper Workbook
Design Thrust	1086	lbf	Minimum	High Priority	Spaceshot Trade Study Results
Characteristic Velocity Efficiency (ηC^*)	90	%	Minimum	High Priority	Spaceshot Trade Study Results
Thrust Coefficient Efficiency (ηCf)	98	%	Minimum	High Priority	Lotus Target Numbers
Design Chamber Pressure	500	psig	Target	Med. Priority	Spaceshot Trade Study Results
Design Chamber OF Ratio	4.25		Target	Low Priority	Spaceshot Trade Study Results
Thermal Cycle Life	20		Minimum	Critical	Test Campaign + Uncertainty

Testing Timeline Overview

B

F

Test Campaign discussions will be held in a Casper TRR near the end of the summer

Design Overview

Subassemblies

SS_WO_FJX_16_16-TITAN

Chamber Design

Chamber and Nozzle Components

Chamber Metrics

Parameter	Imperial	Units	Metric	Units
Thrust	1086	lbf	4831	N
O/F Ratio	4.25		4.25	
Chamber Pressure	500	psig	3.447	MPa
Mass Flow Rate	4.466	lbm/s	2.026	kg/s
Expansion Ratio	7.221		7.221	
Bell Length	80	%	80	%
Converging Angle	35	deg	35	deg
Initial Angle	25	deg	25	deg
Final Angle	11	deg	11	deg
Chamber Diameter	2.310	in	5.867	cm
Throat Diameter	1.046	in	2.657	cm
Exit Diameter	2.54	in	6.452	cm
Min Chamber Length	9.086	in	23.08	cm
Max Chamber Length	12.16	in	30.89	cm

Main Thrust Chamber

B

R P

F

- Components are made out of 304L SS for high temperature operation, high corrosion resistance (oxidation and intergranular¹), and availability
- Designed to have an identical stay-time as Spectre
- Able to be rapidly assembled and disassembled on-site

Parameter	Value	Units
Spectre Stay-Time	0.0015	sec
Casper Stay-Time	0.0015	sec
Nominal Characteristic Length (L*)	40.0	in
Nominal Chamber Length	11.14	in
Spectre Workbook 5/15, Casper Workbook 5/17/		

Nominally, the thrust chamber is comprised of three components
CSP-CBR-0001, CSP-CBR-0002, and CSP-CBR-0004

Variable L* Rings

- Since L* data for isopropyl alcohol/nitrous oxide is difficult to find, Casper was designed to be able to obtain this data
- Swappable chamber extensions allow for adjustment of chamber L*
 - Thermal data from thermocouples will be collected during possible L* injector tests along with thrust data from HTS
 - Metrics of heat from thermocouples and thrust will be combined to determine the highest performing L*

CSP-CBR-0003 extends L* by 5 in

CSP-CBR-0004 extends L* by 10 in

F

B

L* Configurations

Shortened Configuration

Semi-Shortened Configuration

Value

35

0.00133

10.11

Parameter

Characteristic Length (L*)

Stay-Time

Chamber Length

Units

in

sec

in

Parameter	Value	Units
Characteristic Length (L*)	30	in
Stay-Time	0.00114	sec
Chamber Length	9.086	in

RPG

BU

Nominal Configuration

Parameter	Value	Units
Characteristic Length (L*)	40	in
Stay-Time	0.00152	sec
Chamber Length	11.14	in

Extended Configuration

Parameter	Value	Units
Characteristic Length (L*)	45	in
Stay-Time	0.00171	sec
Chamber Length	12.16	in

Attachment

ВU

RPG

- Axial attachment of the elements is facilitated by radial bolts from the nozzle section
 - Allows for flexibility in chamber length
 - On-site rapid chamber adjustment
- Vibration resistance is handled through Nord-Lock locking washers
- A required installation torque is given based on Nord-Lock torque guidelines

Parameter	Value	Units	Source
Number of Bolts	6		
Bolt Ultimate Tensile Strength	70,000	psi	McMaster 92196A561
Bolt Installation Torque	6.8±1.7	ft-lbf	Nord-Lock; NASA-RP-1228
Maximum Operational Load/ Bolt	59.749	lbf	Pressure Balance
Ultimate Margin	9.921		

17

Casper Structural Calculations 5/17/2020

Concentricity & Clocking

- Concentricity of the chamber elements are handled by toleranced lips on each component
 - Concentricity features are uniform across chamber components to allow for mix/match

- Rotational clocking of the component is accomplished by a press-fit dowel pin sliding into a clearance-fit dowel slot
 - Ease of manufacturing and ease of assembly

Instrumentation Ports

- Two milled flats house eleven total instrumentation ports
 - 10x Thermocouple ports for measuring heat flux (more info in Thermal Analysis section)
 - 1x Pressure Transducer port for measuring chamber pressure
- All instrumentation ports are AS5202-2 geometry and locations are independent of L* configuration

Sealing Geometry

 $B \sqcup$

- Buna-N70 O-rings are used to seal between the chamber rings and with the injector head
- Seal max temperature is not of concern for short firings
 - Melting is acceptable as seals are considered expendable and failure modes are benign
- Sealing geometries are consistent between rings, allowing for interchangeability

Thermal Analysis

Chamber, Nozzle

Purpose of Thermal Analysis

- Aids in setting up hot-fire campaign
 - Determine maximum burn-time based on combustion chamber operating conditions
 - Delineates expected temperatures seen throughout engine
- Select/incorporate instrumentation to aid in determining heat-flux load imposed on chamber walls due to unique engine parameters
- Required for thorough structural analysis
- Establish a rough idea of Spectre thermal loading

BURPG

BU

PG

Transient analysis model used to predict determine inner and outer wall temperature transients, convection coefficients, initial flux

Correlations Used	Parameter(s) Calculated	Modes/Assumptions	Inputs	Outputs
Bartz Correlation	h _g , Hot-Gas convection coef.	Transient	Combustion	Transient Inner Wall
Carslaw & Jaeger ^[1]	Inner, Outer Wall Temperature		Chamber Geometry	Temperature
	Transients	Internal Forced	CEA Hot-Gas Data	Transient Outer Wall
RPE, 7th Ed, Eq. 3-14	Nozzle Mach Number	Convection		lemperature
RPE, 7th Ed, Eq. 3-7	Hot-Gas Temperature Distribution	Conduction	Material Properties	Axial Convection Coefficients
		1-D Cylindrical		Hot-Gas Mach Number
		Constant Thermal Conductivity		
		Applied Internal Wall		

Temperature

Hot-Gas Data[1]				
Property	Metric	Units		
OF Ratio	4.25			
Chamber Pressure	500	psig		
Max Gas Temperature	3120	°K		
Characteristic Velocity	1600	m/s		
Specific Heat Ratio	1.192			
Molecular Weight	41.1	g/mol		

304LSS Material Properties[2]

Property	Metric	Units
Thermal Conductivity	17	W/mK
Mass Density	.291	kg/m ³
Specific Heat Capacity	490	J/kgK

¹NASA Chemical Equilibrium with Applications(CEA) ²MIL-HDBK-5J

Temperature[°F]

- Design hot-fire campaign such that none 304LSS chamber components ever reach 50% mechanical strength
- 50% mechanical strength at ~660°C(1220°F)

Thermocouple Locations

- Four locations with unique flux selected for thermocouple placement
 - Straight section
 - Convergent midpoint
 - Throat
 - Divergent midpoint
- Thermal flux to walls from hot-gas determined from thermocouple data
- Two thermocouples are used in the straight portion for fault tolerance and to capture unknown thermal layer progression

Transient Analysis Results - Inner Wall Temp

Hot-Gas Wall Temperature

BU

RPG

Wall kness[in]		Time[s] to 660°C				
		Thickness	Convection Coefficient[W/mK]			
←.125	-		h ₁	h ₂	h ₃	h ₄
.20 .375	-	.125	9.25	8.25	7.50 [MIN]	7.75
.0 .625	~Min Thickness	.25	17.5	15.5	14.0	14.25
.875	č –	.375	24.5	21.5	19.0	19.25
→ 1.0	~Max Thickness	.5	30.0	26.0	22.5	23.0
	5 Max OD	.625	34.0	29.0	24.75	25.25
		.75	36.75	30.75	25.75	26.5
nvection efficients		.875	38.25	31.50	26.25	27.0
W/mK	(]	1.0	39.0	31.75	26.25	27.0
	010	1.843	39.25	32.0	27.5	27.5
	319	2.475	39.5 [MAX]	33.0	28.25	27.75
	354			General ⁻	Frends	
	390			h↑	time	•↓

wall thickness ↑ time ↑

Thic

Со Co

h₁

 h_2

h₃

384

 h_4

Transient Analysis - Profile Through Wall

Plot 'radius' is measured with respect to origin at chamber central axis

B

PG

- Temperature profile mapped across engine wall between period of 1-7[s].
- Profiles allow us to predict range of temperatures expected through wall during hotfire campaigns
 - 3[s] max firing duration, tentative
- Profiles allow us to down-select suitable thermocouple types

Thermocouple Locations (cont.)

TEC1 TEC2

PG

 $B \sqcup$

Probe Distance to Inner Wall

TEC5 TEC6

TEC7

TEC1	.5	TEC3	.25	TEC5	.625	TEC7	.625	TEC9	.375
TEC2	.5	TEC4	.25	TEC6	.625	TEC8	.375	TEC10	.375

- Ten thermocouples to be implemented during initial campaign
- Name-order precedence given to thermocouples upstream of flow
- Further TC additions begin at #11, regardless of location. Ease in CAD
- Naming convention complies with BURPG Official Fluid Naming Structure
- Extra space available on machined flats for additional thermocouples TBD during test campaign

Flux Calculation

- Paired thermocouple data at axial location used to calculate heat flux across a section
- Heat flux[W/m²] is equivalent across any two radial points at some axial location
- Heat flux decreases over time

B

 $q = \frac{k}{\ln(\frac{r_9}{r_{10}})}(T_{10} - T_9) \begin{cases} k, thermal conductivity\\ T_9, TEC9 measurement\\ T_{10}, TEC10 measurement \end{cases}$

Hot-Gas Temperature Profile

Initial Flux Prediction, time = 0

 $q = h(T_g - T_{amb}) \begin{cases} h, convection coefficient\\ T_g, hot - gas temperature\\ T_{amb}, Ambient temperature \end{cases}$

Thermal Cycle Life

- In order to ensure that Casper can handle an extensive testing campaign, its thermal cycle life must be evaluated
 - 14 required hot fires + 6 uncertainty = 20 requirement Ο
- Due to high thermal and mechanical stresses during operation, fatigue can set in guickly
- S/N curves for 304LSS are from an austenitic stainless steel fatigue Argonne National Laboratory paper¹
 - Strain Rate is assumed to be the highest interval due to the fast rate of thermal accumulation Ο

Injector Head Design

Injector dome and head

Injector Head Design Overview

/ HTS Mounting Block

- Capable of directly mounting to HTS' 10,000 lbf load cell
- Casper is capable of being removed from the stand without the need to rotate the entire engine (like Iron Lotus)
- Allows for the entire engine assembly and removal to happen in the field with six screws
- Compression loading through back of the oxidizer plenum

Oxidizer Plenum

- Goal is to effectively and evenly distribute oxidizer into the S1 inlet of the injector element
- Large plenum size and axial plenum inlet allow for even distribution
- Fed via a 1.000" flange fitting currently fitted to Iron Lotus
- AS5202-2 instrumentation ports read ox plenum pressure and plenum temperature

BU

RPG

Section A-A

Fuel Plenum

- Fuel Plenum Goals
 - 1. Effectively and evenly distribute fuel into the S2 inlet of the injector element
 - 2. Provide passive cooling to the injector faceplate and polymer o-rings
- Indirect plenum feed causes fuel to flow along the injector faceplate and seals, cooling them
- Made of 304L SS due to proximity to high temperatures
- Fed via three SAE J1926-6 ports coming from a distribution manifold
- Two AS5202-2 instrumentation ports read fuel plenum pressure and plenum temperature

Fuel Plenum (cont.)

- Using a central bridged design, the center gland seal is able to be supported with fuel flow around it
- The indirect flow path of the fuel cools the faceplate and seals touching the hot gas

Flow Paths

BURPG

Images to demonstrate the approximate flow path of the fuel and oxidizer into the element

Copper Injector Faceplate

- One of the biggest concerns with coaxial-swirl injectors is element and faceplate erosion due to high combustion planes
- To ensure that faceplate corrosion won't be an issue for Spectre, Casper has the capability of changeable faceplates that can be swapped out and changed based on findings from testing
 - Erosion can be visually determined & measured by tools in EPIC (Engineering Product Innovation Center)
 - Actively cooled by the IPA in the plenum. Can include cooling channels in the future if necessary
- Made of C110 copper for maximum heat transfer capability (material going to be used on Spectre)

Attachment

 $B \sqcup$

PG

- Six radial bolts hold the injector assembly to the chamber assembly
 - On-site swappable injector elements
 - Separate from chamber extension bolts, minimizes disassembly of the entire engine
- Vibration resistance is handled through Nord-Lock locking washers
- A required installation torque is given based on Nord-Lock installation torques. Maintains positive margin

Parameter	Value	Units	Source
Number of Bolts	б		
Bolt Ultimate Tensile Strength	70,000	psi	McMaster 92196A332
Bolt Installation Torque	6.8±1.7	ft-lbf	Nord-Lock; NASA-RP-1228
Maximum Operational Load/Bolt	285.021	lbf	Pressure Balance
Margin	0.757		
		Cas	per Structural Calculations 5/17/2020

6x 92196A332 Socket Head Screw .2500-28 x 2.500 long, 18-8SS

6x **91812A229** Nord-Lock Washer .2500 Screw Size, 316SS

Concentricity & Clocking

- Concentricity of components are handled through toleranced, circular lips and grooves on each of the components
 - Consistent method with Chamber concentricity
- Clocking is primarily handled through a press-fit dowel pin sliding into a clearance-fit dowel slot
 - Ease of manufacturing and ease of assembly
 - Consistent method with Chamber clocking
- Faceplate clocking is handled through an offset machined tab and slot

вυ

Sealing

RPG

BU

- Buna-N70 o-rings are used for compatibility and cost
- Melting is acceptable
 - Hot Gas to Atmosphere failure is benign 0
 - Hot Gas to Fuel failure is failsafe 0 (decrease O/F ratio)
- Double interpropellant seals are incorporated with atmospheric vents for added safety

Hot Gas to Atmosphere

Hot Gas to Fuel

Fuel to Atmosphere

Ox to Atmosphere

Dual interpropellant seals w/ atmospheric vent

Seal failure increases O/F of the chamber, cooling temperatures

Injector Element Design

- Casper and Spectre will feature a Coaxial-Swirl Injector type
 - Driven by high efficiency requirements for Spectre
 - Lower manufacturing cost than similarly performing impinging jet injectors (IL, LD2)
- Elements will be additively manufactured out of 301SS on the GE Mlab DMLS printer in EPIC
- Casper will feature a single element to Spectre's three
- Common sealing surfaces allow for interchangeable elements

B

F

Coaxial-Swirl Basics

• Made up of two "stages"

PG

- S1: central hole
- S2: outer annulus
- Coaxial-Swirl injectors utilize a tangential component of velocity to the fuel and oxidizer to give them a swirling motion
- Swirling results in a conical exit to the fuel/oxidizer
 - How these cones interact determines the type of injector
 - Casper utilizes an internal mixing configuration meaning S1 (oxidizer) mixes with S2 (fuel) before exiting the element
 - Superior mixing, combustion efficiencies, and stable combustion

Design and Dynamics of Jet and Swirl Injectors by Bazarov, Yang, Puri [Liquid Rocket Thrust Chambers: Aspects of Modeling, Analysis, and Design]

/ Testing Path

- Coaxial-Swirl injectors are tough to design for due to a large number of variables and effects [Appendix]
- Ultimately, cone angle is the easiest and most encompassing. Adjusting other variables just change cone angles
- With newfound discharge coefficient data, S1 cone angles can be calculated. S2 and combined cone angles are harder to define and can only be estimated
- Will be testing at least three configurations: nominal impingement, soft impingement, aggressive / impingement

BURPG

BURPG

Value	0103	0104	0105	Units
Cone Angle S1/S2/Combined	70°/??/??	80°/??/??	60°/??/??	deg
Geometric Characteristic Parameter (Abramovich #) S1/S2	1/23.66	1.5/23.66	0.6/15.53	
Coefficient of Discharge S1/S2	0.363/0.0248	0.275/0.0248	0.513/0.0357	
Mixing Residence Time	0.000532	0.000502	0.0005	sec
Inlet Hole Quantity S1/S2	6/3	6/3	6/3	
Inlet Hole Diameter S1/S2	0.288/0.106	0.276/0.106	0.314/0.108	in
Coefficient of Fullness S1/S2	81.5/27.75	74/13.5	91/18.6	% Full

Testing Path (cont.)

- Low pressure waterflows of SLA printed elements on a homebuilt stand
- Elements will be tuned to match required mass flow rates and correlations between cone angles and geometric parameters are recorded
- Final selected waterflow articles will be retested with DMLS before being hotfired
- Testing for combustion stability, combustion efficiencies, and thermal data as discussed

S1 initial waterflow test conducted on November 16, 2019

BL

RPG Further Test Campaign discussions will be held in a Casper TRR near the end of the summer

Logistics

Procurement & Manufacturing

BU

PG

- Manufacturing will be completed in EPIC (Engineering Product Innovation Center)
- Casper was designed to decrease as much cost as possible

	Item	Source	Unit Cost	Units	Total
-	304L Stainless Steel Rod [Ø5.000 x 19.500 Long]	Yarde Metals	\$234.87	1	\$234.87
	6061-T6511 Aluminum Rod [Ø4.750 x 19.576 Long]	Yarde Metals	\$72.44	1	\$72.44
	32009631 C110 Copper Sheet [12.000 x 12.000 x .125 Thick]	MSC Direct	\$85.83	1	\$85.83
	92196A561 Socket Head Screw, 18-8SS [.250-20 UNC-3A x 5.000 Long]	McMaster-Carr	\$2.71	6	\$16.26
	92196A332 Socket Head Screw, 18-8SS [.250-28 UNF-3A x 2.500 Long]	McMaster-Carr	\$5.86	1	\$5.86
	92196A327 Socket Head Screw, 18-8SS [.250-28 UNF-3A x 1.250 Long]	McMaster-Carr	\$8.04	1	\$8.04
	91812A229 Nord-Lock Washer, 316SS [.250 Screw Size]	McMaster-Carr	\$9.28	5	\$46.40
	90145A417 Dowel Pin, 18-8SS [Ø.0625 x .375 Long]	McMaster-Carr	\$9.67	1	\$9.67
	9452K161 [-232] Buna-N 70A O-Ring	McMaster-Carr	\$10.69	1	\$10.69
	9452K96 [-225] Buna-N 70A O-Ring	McMaster-Carr	\$14.37	1	\$14.37
	9452K36 [-216] Buna-N 70A O-Ring	McMaster-Carr	\$9.05	1	\$9.05
	9452K141 [-135] Buna-N 70A O-Ring	McMaster-Carr	\$11.86	1	\$11.86
	9452K114 [-027] Buna-N 70A O-Ring	McMaster-Carr	\$8.90	1	\$8.90
	9452K77 [-023] Buna-N 70A O-Ring	McMaster-Carr	\$6.54	1	\$6.54
		1	1		

Total: **\$540.78**

Path Forward

- 1. Implement feedback from industry on this review
- 2. Develop ANSYS Structural models to check stresses in an internal review
- 3. Begin work on preliminary Spectre design
- 4. Test Readiness Review near the end of summer (industry)
- 5. Manufacture
- 6. Waterflow test articles
- 7. Hot Fire
- 8. Repeat

BURPG

Table of Contents

BURPG

Appendix

Appendix Contents

- 54. BURPG Overview
- 55. BURPG History
- 56. BURPG Legacy
- 57. BURPG Terms & Phrases
- 58. Spaceshot Trade Study Revision
- 59. Spaceshot Trade Study Results
- 60. Chamber Equation-Driven CAD
- 61. Chamber Bolt Calculations
- 62. Transient Analysis Outer Wall Temp
- 63. Transient Analysis Bartz Correlation
- 64. Chamber Temperature Profile
- 65. Thermal Cycle Calculations
- 66. Injector Head Bolt Calculations
- 67. <u>Thermocouple Acquisition</u>
- 68. Fuel Plenum More Views
- 69. Injector Element Design Process
- 70. Types of Coaxial-Swirl Injectors
- 71. Internal vs. External Mixing Overview
- 72. Decision on Geometry
- 73. Graphical Correlations
- 74. Injector Variable Relationship Research

75. <u>Waterflow Testing P&ID</u>

- 76. Waterflow Test Stand
- 77. Injector Element Waterflow
- 78. Element Overlay Comparison

BURPG

BURPG Overview

The Boston University Rocket Propulsion Group or BURPG is a student-led and organized group that develops industry-level rockets and liquid rocket engines with the goal of creating a liquid engine to fly a rocket to the Karman Line--the international recognized edge of the atmosphere and start of space.

In the process, our unique team-based learning approach consistently creates some of the top aerospace engineering graduates ready to take on the future space industry.

BURPG History

We have over twenty years of technical history. Starting in 2002, the BU Rocket Team began developing custom solid rocket motors and large high-powered rockets at a time when university rocketry programs didn't exist.

In 2013, we rebranded as the BU Rocket Propulsion Group and began chasing our goal of reaching space. Developing custom hybrid rockets, we developed the most powerful hybrid engine ever tested by a university. A record that still holds to this day.

In an effort to develop top-tier engineers, BURPG now develops liquid engines--the most complex engine type--and rockets to fly them on. In Spring 2017, BURPG tested Iron Lotus, the most powerful liquid engine tested by undergraduates.

BURPG Legacy

Since BURPG was founded, we have continued to produce some of the industry's top engineers through BURPG's team-based, goal-driven engineering process that reflects how industry operates.

Our team has gone on to work and intern for some of the world's most cutting-edge companies. We train our team to not only be able to work for these top companies but also be successful in them.

Check out some of the places our team has worked:

BURPG Terms & Phrases

- Mk.I Mk.V
 - Our hybrid rocket engines developed up to 2016
- Starscraper
 - Our previous spaceshot rocket attempt. Now retired
- Lotus Dev 1 (LD1)
 - Our first liquid engine developed and fired in 2016
- Iron Lotus (IL)
 - A 2,500 lbf thrust heatsink test-bed engine for our LD2 engine
 - Most powerful liquid engine hotfired by a university (2017)
- Lotus Dev 2 (LD2)
 - Our 2,500 lbf thrust flight optimized, regen-cooled engine
 - Will be flying on the Pursuit launch vehicle
- Low Altitude Demonstrator (LAD)
 - A large solid rocket to test spaceshot technologies
- Horizontal Test Stand (HTS)
 - Our 10,000 lbf thrust liquid engine test stand
- Citadel
 - Our 1,500 lbf thrust gaseous engine test stand
- Mortise
 - Our 450 lbf thrust gaseous methane, gaseous oxygen engine

- ASTRo
 - A High-Powered Rocket with active aerodynamic controls
 - A test platform for controls systems of Starscraper and Pursuit
- Pursuit
 - The first liquid rocket for the team
 - Flying to over 60km and powered by LD2
 - The most complex vehicle developed by a university
- Spectre
 - The most powerful engine developed by BURPG
 - Over 3,000 lbf of thrust
 - \circ $\,$ To power our future space shot rocket
- Casper
 - A 1,000 lbf heatsink test-bed engine for our Spectre engine

Spaceshot Trade Study Revision

- A reflection on how the team was sizing its upcoming spaceshot realized there was a need for a higher accuracy model of sizing vehicles and simulating them.
- Previous flight dynamics methods and trade studies resulted in high runtime, high error, and no way of predicting the mass of a vehicle.
- Two tools were developed:
 - Spaceshot Sizing Worksheet (Excel)
 - Takes in system level inputs (SL Thrust, Chamber Pressure, Diameter, etc.) and outputs mass and length values.
 - Features full pressure drop, pressurant system, and tank sizing calculators.
 - A 1.5x factor (based off of Starscraper design vs. actual) is applied to an optimized configuration resulting in an achievable construction mass.
 - Sparrow (MATLAB)
 - Highly accurate 1DOF simulation utilizing ODE solvers for fast runtime and accurate results.
 - Outputs performance such as apogee, time to burnout, max velocity, etc.
- Git repository: <u>https://phab.burpg.space/source/Talon/</u>

Spaceshot Trade Study Results

- Hundreds of results were run and compiled on the <u>Drive</u>.
- Single-stage and two-stage vehicles were tested at varying input parameters.
- Selected spaceshot configuration:

Sea Level Thrust	6,000	lbf
Chamber Pressure	500	psia
ηC*	90	%
ηCf	98	%
OF Ratio	4.25	
Tank Diameter	14	in
Length Ox Tank	15	ft
Pressurant Temperature	300	°F

 A full writeup on the process of the trade study is on phab including a fallback design: <u>https://phab.burpg.space/w/projects/ghost_series/spectre/trade_study/</u>
 BLLRPG

Chamber Equation-Driven CAD

"d1"= "d2" * 2.209'ft "d2"= 39.3701* 2 * ("A2" / (3.14159)) ^ 0.5'ft "D3@Sketch 1" = "d2" * 1.5 * 0.5 "D4@Sketch 1" = "d2" * 0.5 * 0.4 "d3"= 39.3701 * 2 * ("A2" * "AreaRatio" / (3.14159)) ^ 0.5'ft "ChamberLength" = 8.603'in "ConvergenceAngle" = 35'degrees "D9@Sketch 1" = "ConvergenceAngle" "BellRatio"= 0.8 "Mdot"= 2.026'kg/s "P1"= 3447378.647'N/m^2 "k"= 1.1773 "R"= 201.958'N*m/kg*K "T1"= 3120.25'K "A2"= ("Mdot" * "V2") / "SonicVelocity""m^2 "D10@Sketch 1" = "d1" R2.475 "AreaRatio" = 7.2214 "D2@Sketch 1" = "d2" RPG BU

"ConeLength"= ("d3" - "d2") / (2 * tan (15))'in

"D12@Sketch 1" = "ChamberLength" * "LstarRatio"+ 0.3521

Chamber Bolt Calculations

- Pulled from the Casper Structural Calculations spreadsheet
- Utilizes the clamping force and torque equations from NASA-RP-1228
- Factors of Safety and maximum preload percentage found in NASA-STD-5005D

T = KFd, where T denotes torque, F denotes axial load, d denotes bolt diameter, and K(torque coefficient) is a calculated value from the formula:

$$K = \left(\frac{d_m}{2d}\right) \frac{\tan\psi + \mu \sec\alpha}{1 - \mu \tan\psi \sec\alpha} + 0.625\mu_c$$

as given in reference 14 (p. 378) where

- d_m thread mean diameter
- ψ thread helix angle
- μ friction coefficient between threads
- α thread angle

F

 μ_c friction coefficient between bolthead (or nut) and clamping surface

		Chambe	r Bolt Ca	culations						
Parameter Variable Metric Value Imperial Value Source Notes										
Ultimate Factor of Safety		3	27	3	227	NASA-STD-5005D				
Yield Factor of Safety		2		2	 0	NASA-STD-5005D				
Bolt Tensile Ultimate Strength		4.83E+08	Pa	70000	psi	McMaster 92196A561				
Bolt Tensile Yield Strength		2.07E+08	Pa	30000	psi	http://www.tatoolsonline.d				
Maximum Allowable Preload Stress		1.45E+08	Pa	21000	psi	NASA-STD-5005D				
Bolt Minor Diameter	d	0.00479	m	0.1887	in	https://www.engineersed	.250-20-3A Minor Diameter			
Bolt Effective Cross Section		1.80E-05	m^2	0.02797	in^2					
Maximum Allowable Clamping Force	F	2612.398	N	587.291	lbf					
Bolt Thread Mean Diameter	dm	0.00545	m	0.2147	in	https://www.engineersed	.250-20-3A Min Pitch Diamete			
Thread Helix Angle	ψ	3.400	deg	3.400	deg	US Department of Comm				
Friction Coefficient Between Threads	µStSt	0.740	-	0.740		NASA-RP-1228				
Thread Angle	α	60	deg	60	deg	UNC Standard				
Friction Coefficient Between Bolthead and Surface	µAISt	0.740		0.740		NASA-RP-1228				
Maximum Allowable Torque	Т	17.814	N*m	13.139	ft*lbf	NASA-RP-1228				
Nord-Lock Installation Torque		6.915	N*m	5.1	ft*lbf	Nord-Lock Torque Guide	316SS Nord-Lock Installation			
Torque Installation Tolerance		25	%	25	%	NASA-RP-1228	Torque Wrench Tolerance			
Torque Specification		9.220	N*m	6.800	ft*lbf					
(±)		2.305	N*m	1.700	ft*lbf					
Minimum Clamping Force		1014.044	N	227.966	lbf					
Number of Bolts		6		6						
Chamber Pressure		3.45E+06	Pa	500	psi	Casper Workbook 5/16/2				
(Chamber - Throat) Cross Sectional Area		2.15E-03	m^2	3.332	in^2					
Chamber Apparent Force		7410.737	N	1666	lbf					
Diverging Nozzle Apparent Force		2921.147	N	656.7	lbf	Casper Workbook 5/16/2				
Total Maximum Load		4489.590	N	1009.300	lbf	The second second second				
Maximum Load to Withstand		748.2650127	N	168.217	lbf					
Maximum Operational Load		265.779	N	59.749	lbf					
Maximum Stress in Each Bolt		1.47E+07	Pa	2136.486	psi					
Yield Margin		6.021	777 A	6.021						
Ultimate Margin		9.921		9.921	223					

Transient Analysis - Outer Wall Temp

BURPG

Transient Analysis - Bartz Correlation

Bartz - Convective HT Coefficient

- Solves combustion flow convective HT coefficient at inner combustor wall
- Inputs: chamber geometry, flow conditions, and fluid properties

$$h_g = \left[\frac{0.026}{D_t^{\frac{1}{5}}} \left(\frac{mu^{\frac{1}{5}}C_p}{Pr_5^{\frac{3}{5}}}\right)_{ns} \left(\frac{(p_c)_{ns}g}{c*}\right)^{\frac{4}{5}} \left(\frac{D_t}{R}\right)^{\frac{1}{10}}\right] \left(\frac{A_t}{A}\right)^{\frac{9}{10}} \sigma$$

Chamber Temperature Profile

BURPG

Thermal Cycle Calculations

- Pulled from the Casper Structural Calculations spreadsheet
- Utilizes material property data from MIL-HDBK-5J for austenitic stainless steel
- Utilizes S/N curve from an austenitic stainless steel fatigue Argonne National Laboratory paper

Thermal Cycle Calculations									
Parameter	Variable Metric Value		ie Imperial Value			Source	Notes		
Max Temperature on Chamber Wall		660	degC	1220	degF	Where 304LSS is			
Young's Modulus [@1220°F]	E	1.56E+11	Pa	22620000	psi	MIL-HDBK-5J [F			
Thermal Expansion Coefficient [@1220°F]	α		m/m/°C	0.0000105	in/in/°F	MIL-HDBK-5J [FI			
Equivalent Thermal Stress	σ	1883.210	MPa	273136.5	psi				
Chamber Pressure		3.447	MPa	500	psi				
Total Stress		1886.657	MPa	273636.5	psi				
Chamber Pressure Total Stress		3.447 1886.657	MPa MPa	500 273636.5	psi psi				

100

80

Percentage of Temperature Modulus

Room .

20

n

0

200

400

Injector Head Bolt Calculations

- Pulled from the Casper Structural Calculations spreadsheet
- Utilizes the clamping force and torque equations from NASA-RP-1228
- Factors of Safety and maximum preload percentage found in NASA-STD-5005D

T = KFd, where T denotes torque, F denotes axial load, d denotes bolt diameter, and K(torque coefficient) is a calculated value from the formula:

$$K = \left(\frac{d_m}{2d}\right) \frac{\tan\psi + \mu \sec\alpha}{1 - \mu \tan\psi \sec\alpha} + 0.625\mu_c$$

as given in reference 14 (p. 378) where

- d_m thread mean diameter
- ψ thread helix angle
- μ friction coefficient between threads
- α thread angle

 μ_c friction coefficient between bolthead (or nut) and clamping surface

Injector Head Bolt Calculations									
Parameter	Variable	Metric Value		Imperial Val	ue	Source	Notes		
Ultimate Factor of Safety		3		3		NASA-STD-5005			
Yield Factor of Safety		2		2		NASA-STD-5005			
Bolt Tensile Ultimate Strength		4.83E+08	Pa	70000	psi	McMaster 92196			
Bolt Tensile Yield Strength		2.07E+08	Pa	30000	psi	http://www.tatool			
Maximum Allowable Preload Stress		1.45E+08	Pa	21000	psi	NASA-STD-5005			
Bolt Minor Diameter	d	1.01E+08	m	0.2062	in	https://www.engi	.250-28-3A Minor Diameter		
Bolt Effective Cross Section		2.15E-05	m^2	0.03339	in^2				
Maximum Allowable Clamping Force	F	3119.412	N	701.272	lbf				
Bolt Thread Mean Diameter	dm	2183.588	m	0.2243	in	https://www.engi	.250-28-3A Min Pitch Diameter		
Thread Helix Angle	Ψ	2.300	deg	2.300	deg	US Department o			
Friction Coefficient Between Threads	µStSt	0.740		0.740		NASA-RP-1228			
Thread Angle	α	60	deg	60	deg	UNF Standard			
Friction Coefficient Between Bolthead and Surface	µA/St	0.610		0.610		NASA-RP-1228			
Maximum Allowable Torque	т	20.591	N*m	15.187	ft*lbf	NASA-RP-1228			
Nord-Lock Installation Torque		6.915	N*m	5.1	ft*lbf	Nord-Lock Torqu	316SS Nord-Lock Installation Toro		
Torque Installation Tolerance		25	96	25	96	NASA-RP-1228	Torque Wrench Tolerance		
Torque Specification		9.220	N*m	6.800	ft*lbf				
(±)		2.305	N*m	1.700	ft*lbf				
Minimum Clamping Force		1367.631	N	307.456	lbf				
Number of Bolts		6		6					
Oxidizer Plenum Pressure		4.06E+08	Pa	588.235	psi	Casper Workboo			
Oxidizer Plenum Projected Area		3.43E-03	m^2	5.309	in^2	97 			
Oxidizer Plenum Apparent Force		13892.318	N	3123.111	lbf				
Fuel Plenum Pressure		4.06E+06	Pa	588.235	psi	Casper Workboo			
Fuel Plenum Projected Area		2.24E-03	m^2	3.477	in^2	22			
Fuel Plenum Apparent Force		9098.851	N	2045.499	lbf				
Chamber Pressure		3.45E+08	Pa	500	psi	Casper Workboo			
Chamber Cross Sectional Area		2.70E-03	m^2	4.191	in^2	97 			
Chamber Apparent Force		9321.248	N	2095.5	lbf				
Total Engine Thrust		4830.769	N	1086	lbf	Casper Workboo			
Nozzle Apparent Force		-4490.480	N	-1009.5	lbf	22			
Oxidizer Cold Flow Force		13892.318	N	3123.111	lbf				
Fuel Cold Flow Force		9098.851	N	2045.499	lbf				
Dual Propellant Cold Flow Force		13892.318	N	3123.111	lbf				
Hot Fire Force		9061.550	N	2037.111	lbf				
Maximum Force to Withstand		2315.388	N	520.519	lbf				
Maximum Operational Load		947.755	N	213.063	lbf				
Maximum Stress in Each Bolt		4.40E+07	Pa	6380.291	psi				
Yield Margin		0.175		0.175					
Ultimate Margin		0 219		0.219					

66

Thermocouple Acquisition

• Thermocouples to be used for Casper will be acquired through Thermocouple Technology, LLC.

Fuel Plenum More Views

Injector Element Design Process

• Design process followed the process outlined in:

Liquid Rocket Thrust Chambers: Aspects of Modeling, Analysis, and Design: Design and Dynamics of Jet and Swirl Injectors by Bazarov, Yang, Puri

• Discharge coefficients pulled from:

Atomization and Sprays: A Study on Discharge Coefficients of Open-Type/Closed-Type Swirl Injectors for a Liquid Rocket Engine by Ahn, Choi

/ BURPG

Coaxial-Swirl injectors can be characterized by the shape of their swirl chambers

An open stage doesn't contain a distinct change in diameter between the nozzle and swirl chamber

A closed stage has a larger diameter swirl chamber with a contraction zone

- Open-Open
 - Simplest, smallest element. Mainly done with gas-gas
- Open-Closed
 - \circ Lower circumferential velocity at nozzle of open inner stages causes $lpha_1 < lpha_2$
 - \circ No mixing in $R_r \leq 1$
 - \circ Longer recess length need for $R_r>1$
- Closed-Closed
 - \circ ~ Up to $\eta c^* = 98\%$ for internal mixing
 - Open Stage 2 leads to prohibitively large element size
- Closed-Open
 - \circ ~ Up to $\eta c^* = 97.5\%$ for internal mixing
 - Open Stage 2 fits well

Diagram describing a closed-closed, closed-open, and open-open design (left to right)

Internal vs. External Mixing Overview

Internal Mixing

- $R_r > 1$
- Impinges inside of nozzle
- Stay time in nozzle controls internal mixing
- Shorter mixing distance in chamber
- Used contact with Stage 2 nozzle wall to help with mixing as well as gas-liquid interaction in the combustion chamber

Tip Mixing

- $R_r = 1$
- Impinges at tip of nozzle
- Sensitive to slight changes in engine parameters during flight
- Hybrid of Internal and External mixing mechanisms have been observed

External Mixing

- $R_r < 1$
- Impingement inside of combustion chamber
- Requires high α₁
 Difficult to achieve with closed Stage 1
- Atomization and chamber gas drive mixing

Decision on Geometry

• Open Stage 1

- \circ Eliminated due to issues with $lpha_1 < lpha_2$
- Closed Closed
 - Was initially considered but eliminated due to spacing
- Closed Open
 - \circ Performs with similarly high ηc^* to Closed-Closed
 - $_{\odot}$ $\,$ Stage 2 fits nicely in the profile of the Stage 1 swirl chamber $R_{n2} < R_{n1}$

• External Mixing

- Eliminated for poor performance
- Requires lengthening stay-time in order to achieve proper mixing

• Internal Mixing

вЦ

RP

- High efficiency
- Stable combustion
 - ~1.5% P_{rms}/P_c
- Shortened stay-time need for mixing in the chamber
- High peak frequency helps mixing by creating crests in liquid sheets
 - ~2x that of tip mixing

Diagram of element spacing in Closed-Closed configuration w/ 10 elements

Closed-Open with internal mixing
Graphical Correlations

PG

B

Graphical representation of some important parameters; (a) mass flow coefficient vs. passage fullness; (b) dimensionless parameters vs. α and A

The figure on the left demonstrates the optimum mass flow for a given set of parameters. This is where we're targeting to hit

73

F

Waterflow Testing P&ID

Boson University Rocket Propulsion Group Spectre Injector Article Testing P&ID Rev 1.0, 11/16/2019

BURPG

75

Waterflow Test Stand

BURPG

Element Overlay Comparison

Aggressive Impingement

Nominal Impingement

Softer Impingement

BURPG